Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.

Identifieur interne : 000B47 ( Main/Exploration ); précédent : 000B46; suivant : 000B48

Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.

Auteurs : Alexandre Mercier [Canada] ; Simon Labbé

Source :

RBID : pubmed:19502236

Descripteurs français

English descriptors

Abstract

In Schizosaccharomyces pombe, the CCAAT-binding factor is a multisubunit complex that contains the proteins Php2, Php3, Php4, and Php5. Under low iron conditions, Php4 acts as a negative regulatory subunit of the CCAAT-binding factor and fosters repression of genes encoding iron-using proteins. Under conditions of iron excess, Php4 expression is turned off by the iron-dependent transcriptional repressor Fep1. In this study, we developed a biological system that allows us to unlink iron-dependent behavior of Php4 protein from its transcriptional regulation by Fep1. Microscopic analyses revealed that a functional GFP-Php4 protein accumulates in the nucleus under conditions of iron starvation. Conversely, in cells undergoing a transition from low to high iron, GFP-Php4 is exported from the nucleus to the cytoplasm. We mapped a leucine-rich nuclear export signal that is necessary for nuclear exclusion of Php4. This latter process was blocked by leptomycin B. By using coimmunoprecipitation analysis, we showed that Php4 and Crm1 physically interact with each other. Although we determined that nuclear retention of Php4 per se is not sufficient to cause a constitutive repression of iron-using genes, we found that deletion of the grx4(+)-encoded glutaredoxin-4 renders Php4 constitutively active and invariably localized in the nucleus. Further analysis by bimolecular fluorescence complementation assay and by two-hybrid assays showed that Php4 and Grx4 are physically associated in vivo. Taken together, our findings indicate that Grx4 and Crm1 are novel components involved in the mechanism by which Php4 is inactivated by iron in a Fep1-independent manner.

DOI: 10.1074/jbc.M109.009563
PubMed: 19502236
PubMed Central: PMC2740451


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.</title>
<author>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4</wicri:regionArea>
<wicri:noRegion>Quebec J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19502236</idno>
<idno type="pmid">19502236</idno>
<idno type="doi">10.1074/jbc.M109.009563</idno>
<idno type="pmc">PMC2740451</idno>
<idno type="wicri:Area/Main/Corpus">000B00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B00</idno>
<idno type="wicri:Area/Main/Curation">000B00</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B00</idno>
<idno type="wicri:Area/Main/Exploration">000B00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.</title>
<author>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4</wicri:regionArea>
<wicri:noRegion>Quebec J1H 5N4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CCAAT-Binding Factor (analysis)</term>
<term>CCAAT-Binding Factor (genetics)</term>
<term>CCAAT-Binding Factor (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Karyopherins (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Receptors, Cytoplasmic and Nuclear (metabolism)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (analysis)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Caryophérines (métabolisme)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Facteur de liaison à la séquence CCAAT (analyse)</term>
<term>Facteur de liaison à la séquence CCAAT (génétique)</term>
<term>Facteur de liaison à la séquence CCAAT (métabolisme)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (analyse)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Récepteurs cytoplasmiques et nucléaires (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>CCAAT-Binding Factor</term>
<term>GATA Transcription Factors</term>
<term>Glutaredoxins</term>
<term>Iron</term>
<term>Karyopherins</term>
<term>Receptors, Cytoplasmic and Nuclear</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Protéines de Schizosaccharomyces pombe</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Protéines de Schizosaccharomyces pombe</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caryophérines</term>
<term>Cytoplasme</term>
<term>Facteur de liaison à la séquence CCAAT</term>
<term>Facteurs de transcription GATA</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Noyau de la cellule</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Récepteurs cytoplasmiques et nucléaires</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In Schizosaccharomyces pombe, the CCAAT-binding factor is a multisubunit complex that contains the proteins Php2, Php3, Php4, and Php5. Under low iron conditions, Php4 acts as a negative regulatory subunit of the CCAAT-binding factor and fosters repression of genes encoding iron-using proteins. Under conditions of iron excess, Php4 expression is turned off by the iron-dependent transcriptional repressor Fep1. In this study, we developed a biological system that allows us to unlink iron-dependent behavior of Php4 protein from its transcriptional regulation by Fep1. Microscopic analyses revealed that a functional GFP-Php4 protein accumulates in the nucleus under conditions of iron starvation. Conversely, in cells undergoing a transition from low to high iron, GFP-Php4 is exported from the nucleus to the cytoplasm. We mapped a leucine-rich nuclear export signal that is necessary for nuclear exclusion of Php4. This latter process was blocked by leptomycin B. By using coimmunoprecipitation analysis, we showed that Php4 and Crm1 physically interact with each other. Although we determined that nuclear retention of Php4 per se is not sufficient to cause a constitutive repression of iron-using genes, we found that deletion of the grx4(+)-encoded glutaredoxin-4 renders Php4 constitutively active and invariably localized in the nucleus. Further analysis by bimolecular fluorescence complementation assay and by two-hybrid assays showed that Php4 and Grx4 are physically associated in vivo. Taken together, our findings indicate that Grx4 and Crm1 are novel components involved in the mechanism by which Php4 is inactivated by iron in a Fep1-independent manner.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19502236</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>30</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.</ArticleTitle>
<Pagination>
<MedlinePgn>20249-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M109.009563</ELocationID>
<Abstract>
<AbstractText>In Schizosaccharomyces pombe, the CCAAT-binding factor is a multisubunit complex that contains the proteins Php2, Php3, Php4, and Php5. Under low iron conditions, Php4 acts as a negative regulatory subunit of the CCAAT-binding factor and fosters repression of genes encoding iron-using proteins. Under conditions of iron excess, Php4 expression is turned off by the iron-dependent transcriptional repressor Fep1. In this study, we developed a biological system that allows us to unlink iron-dependent behavior of Php4 protein from its transcriptional regulation by Fep1. Microscopic analyses revealed that a functional GFP-Php4 protein accumulates in the nucleus under conditions of iron starvation. Conversely, in cells undergoing a transition from low to high iron, GFP-Php4 is exported from the nucleus to the cytoplasm. We mapped a leucine-rich nuclear export signal that is necessary for nuclear exclusion of Php4. This latter process was blocked by leptomycin B. By using coimmunoprecipitation analysis, we showed that Php4 and Crm1 physically interact with each other. Although we determined that nuclear retention of Php4 per se is not sufficient to cause a constitutive repression of iron-using genes, we found that deletion of the grx4(+)-encoded glutaredoxin-4 renders Php4 constitutively active and invariably localized in the nucleus. Further analysis by bimolecular fluorescence complementation assay and by two-hybrid assays showed that Php4 and Grx4 are physically associated in vivo. Taken together, our findings indicate that Grx4 and Crm1 are novel components involved in the mechanism by which Php4 is inactivated by iron in a Fep1-independent manner.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mercier</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Labbé</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023081">CCAAT-Binding Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C459859">Fep1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028884">Karyopherins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C519990">Php4 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018160">Receptors, Cytoplasmic and Nuclear</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078342">exportin 1 protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D023081" MajorTopicYN="N">CCAAT-Binding Factor</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028884" MajorTopicYN="N">Karyopherins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018160" MajorTopicYN="N">Receptors, Cytoplasmic and Nuclear</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19502236</ArticleId>
<ArticleId IdType="pii">M109.009563</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M109.009563</ArticleId>
<ArticleId IdType="pmc">PMC2740451</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11956219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Jan;14(1):214-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 21;112(4):441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):27636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Aug 1;31(15):4332-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12888492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Oct 1;17(19):2374-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12975324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 12;278(50):50120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 5;279(10):9462-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Apr 30;117(3):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(5):1451-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15387822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jun;17(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1992 Jul 27;307(1):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1322323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 May-Jun;23(5-6):547-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8319314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Jun 25;21(12):2955-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1993 Dec;24(6):491-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Mar;136(3):849-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8005439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Mar 15;14(6):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Aug;16(8):4207-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8754820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Apr 1;16(7):1742-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9130718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 27;94(11):5882-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 19;90(6):1051-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9323133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Dec;17(12):7008-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9372932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):795-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1998 Sep;259(5):532-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):15151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 14;120(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15652485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2005 Mar;6(3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15702987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 May 6;330(2):604-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15796926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):25146-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jun 30;16(9):861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 May;18(7):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Sep;41(5):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Aug 8;273(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Feb 1;22(3):356-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Feb;5(2):277-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Jun;7(6):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16625152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1866-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(12):e410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 May;6(5):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17384198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jul 11;26(13):3157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2980-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2008;53:231-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17707146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Sep;24(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Oct;24(10):883-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Mar;7(3):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Jun;7(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jul 8;47(27):7274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2008;46:149-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18680426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Apr;8(4):649-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Labbe, Simon" sort="Labbe, Simon" uniqKey="Labbe S" first="Simon" last="Labbé">Simon Labbé</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Mercier, Alexandre" sort="Mercier, Alexandre" uniqKey="Mercier A" first="Alexandre" last="Mercier">Alexandre Mercier</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19502236
   |texte=   Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19502236" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020